1. The decimal form of 129/225775 is
To convert the fraction
129/225775 into decimal form, you simply divide the numerator by the denominator:
129/225775 ≈ 0.00057197
So, the decimal form of 129/225775 is approximately 0.00057197.
2. HCF of 8, 9, 25 is
To find the highest common factor (HCF) of 8, 9, and 25, you can use various methods like prime factorization, division method, or listing factors. Let's use the division method:
1. Find the factors of each number:
Factors of 8: 1, 2, 4, 8
Factors of 9: 1, 3, 9
Factors of 25: 1, 5, 25
2. Identify the common factors among the numbers:
Common factors: 1
3. The greatest common factor (HCF) is 1.
So, the HCF of 8, 9, and 25 is 1.
3. Which of the following is not irrational?
To determine which of the given expressions is not irrational, let's analyze each one:
a. (2−3)2(2 - \sqrt{3})^2(2−3)2:
• (2−3)2=4−43+3=7−43(2 - \sqrt{3})^2 = 4 - 4\sqrt{3} + 3 = 7 - 4\sqrt{3}(2−3)2=4−43+3=7−43
• This expression involves subtraction and multiplication by a rational number, so it could potentially be rational or irrational.
b. (2+3)2(\sqrt{2} + \sqrt{3})^2(2+3)2:
• (2+3)2=2+26+3=5+26(\sqrt{2} + \sqrt{3})^2 = 2 + 2\sqrt{6} + 3 = 5 + 2\sqrt{6}(2+3)2=2+26+3=5+26
• This expression involves addition and multiplication by a rational number, so it could potentially be rational or irrational.
c. (2−3)(2+3)(\sqrt{2} - \sqrt{3})(\sqrt{2} + \sqrt{3})(2−3)(2+3):
• (2−3)(2+3)=2−3=−1(\sqrt{2} - \sqrt{3})(\sqrt{2} + \sqrt{3}) = 2 - 3 = -1(2−3)(2+3)=2−3=−1
• This expression results in a rational number, since it involves subtraction of irrational numbers.
d. 27727\sqrt{7}277:
• This expression involves multiplication by an irrational number, so it's irrational.
Therefore, the expression in option (c) (2−3)(2+3)(\sqrt{2} - \sqrt{3})(\sqrt{2} + \sqrt{3})(2−3) (2+3) is not irrational. It evaluates to a rational number, -1.
4. The product of a rational and irrational number is
5. The sum of a rational and irrational number is
The sum of a rational and an irrational number can be either rational or irrational, depending on the specific numbers being added.
For example:
• The sum of 12\frac{1}{2}21 (rational) and 2\sqrt{2}2 (irrational) is irrational (12+2\frac{1}{2} + \sqrt{2}21+2).
• The sum of 12\frac{1}{2}21 (rational) and −2-\sqrt{2}−2 (irrational) is also irrational (12−2\frac{1}{2} - \sqrt{2}21−2).
• However, the sum of 12\frac{1}{2}21 (rational) and 12\frac{1}{2}21 (rational) is rational (12+12=1\frac{1}{2} + \frac{1}{2} = 121+21=1).
So, the correct answer is:
(b) irrational
6. The product of two different irrational numbers is always
7. The sum of two irrational numbers is always
The sum of two irrational numbers can be rational or irrational, depending on the specific numbers being added.
For example:
• The sum of 2\sqrt{2}2 (irrational) and −2-\sqrt{2}−2 (irrational) is rational (0).
• However, the sum of 2\sqrt{2}2 (irrational) and 3\sqrt{3}3 (irrational) is irrational (2+3\sqrt{2} + \sqrt{3}2+3).
So, the correct answer is:
(c) rational or irrational
8. If b = 3, then any integer can be expressed as a =
If b=3b = 3b=3, then any integer can be expressed as a=3qa = 3qa=3q or a=3q+ra = 3q + ra=3q+r, where qqq is an integer and rrr is the remainder when dividing by 3, which can be 0, 1, or 2.
So, the correct answer is: (a) 3q, 3q+1, 3q+2
9. The product of three consecutive positive integers is divisible by
The product of three consecutive positive integers will always be divisible by 6.
When you take three consecutive positive integers, at least one of them will be divisible by 2, and at least one of them will be divisible by 3. Therefore, their product will be divisible by
2
×
3
=
6
2×3=6.
So, the correct answer is:
(b) 6
10. The set A = {0,1, 2, 3, 4, …} represents the set of
The set A={0,1,2,3,4,…}A = \{0, 1, 2, 3, 4, \ldots\}A={0,1,2,3,4,…} represents the set of non-negative integers.
So, the correct answer is:
(a) whole numbers
11. Which number is divisible by 11?
To determine if a number is divisible by 11, we can use the divisibility rule for 11, which states that a number is divisible by 11 if the difference between the sum of its digits at odd positions and the sum of its digits at even positions (from right to left) is divisible by 11.
Let's apply this rule to the given numbers:
(a) 1516: (6+1)−(1+5)=7−6=1(6 + 1) - (1 + 5) = 7 - 6 = 1(6+1)−(1+5)=7−6=1 (not divisible by 11) (b) 1452: (2+5)−(4+1)=7−5=2(2 + 5) - (4 + 1) = 7 - 5 = 2(2+5)−(4+1)=7−5=2 (not divisible by 11) (c) 1011: (1+1)−(0+1)=2−1=1(1 + 1) - (0 + 1) = 2 - 1 = 1(1+1)−(0+1)=2−1=1 (not divisible by 11)
None of the given numbers satisfies the divisibility rule for 11.
So, the correct answer is:
(d) None of the above
12. LCM of the given number ‘x’ and ‘y’ where y is a multiple of ‘x’ is given by
The Least Common Multiple (LCM) of two numbers, xxx and yyy, where yyy is a multiple of xxx, is simply yyy.
So, the correct answer is:
(b) y
13. The largest number that will divide 398,436 and 542 leaving remainders 7,11 and 15 respectively is
To find the largest number that will divide 398, 436, and 542 leaving remainders of 7, 11, and 15 respectively, we can subtract the remainders from the numbers and then find the greatest common divisor (GCD) of these differences.
Let's calculate:
1. For 398: 398−7=391398 - 7 = 391398−7=391
2. For 436: 436−11=425436 - 11 = 425436−11=425
3. For 542: 542−15=527542 - 15 = 527542−15=527
Now, we find the GCD of 391, 425, and 527.
The GCD of these numbers is 17.
So, the correct answer is:
(a) 17
14. There are 312, 260 and 156 students in class X, XI and XII respectively. Buses are to be hired to take these students to a picnic. Find the maximum number of students who can sit in a bus if each bus takes equal number of students
To find the maximum number of students who can sit in a bus if each bus takes an equal number of students, we need to find the greatest common divisor (GCD) of the numbers of students in each class.
The GCD of 312, 260, and 156 can be found by taking the GCD of pairs of these numbers iteratively.
GCD(312,260)=GCD(260,52)=52\text{GCD}(312, 260) = \text{GCD}(260, 52) = 52GCD(312,260)=GCD(260,52)=52 GCD(52,156)=52\text{GCD}(52, 156) = 52GCD(52,156)=52
So, the maximum number of students who can sit in a bus is 52.
Therefore, the correct answer is:
(a) 52
15. There is a circular path around a sports field. Priya takes 18 minutes to drive one round of the field. Harish takes 12 minutes. Suppose they both start at the same point and at the same time and go in the same direction. After how many minutes will they
To find out when Priya and Harish will meet, we need to find the least common multiple (LCM) of their time taken to complete one round of the field.
Priya takes 18 minutes to complete one round, and Harish takes 12 minutes.
The LCM of 18 and 12 is 36 minutes.
So, Priya and Harish will meet again after 36 minutes.
Therefore, the correct answer is:
(a) 36 minutes
16. Express 98 as a product of its primes
To express 98 as a product of its prime factors, we need to find its prime factorization.
We can start by dividing 98 by the smallest prime number, which is 2:
98÷2=49
Now, we divide 49 by the next smallest prime number, which is 7:
49÷7=7
Now, since 7 is a prime number, we cannot further divide it.
So, the prime factorization of 98 is 2×72
Therefore, the correct answer is:
(c) 2×72
17. Three farmers have 490 kg, 588 kg and 882 kg of wheat respectively. Find the maximum capacity of a bag so that the wheat can be packed in exact number of bags.
To find the maximum capacity of a bag so that the wheat can be packed in an exact number of bags, we need to find the greatest common divisor (GCD) of the amounts of wheat each farmer has.
The GCD of 490, 588, and 882 can be found by taking the GCD of pairs of these numbers iteratively.
GCD(490,588)=GCD(98,588)=GCD(98,490)=98\text{GCD}(490, 588) = \text{GCD}(98, 588) = \text{GCD}(98, 490) = 98GCD(490,588)=GCD(98,588)=GCD(98,490)=98 GCD(98,882)=98\text{GCD}(98, 882) = 98GCD(98,882)=98
So, the maximum capacity of a bag is 98 kg.
Therefore, the correct answer is:
(a) 98 kg
18. For some integer p, every even integer is of the form
An even integer can be represented as 2n, where n is an integer.
So, for some integer p, every even integer is of the form 2p
Therefore, the correct answer is:
(b) 2p
19. For some integer p, every odd integer is of the form
An odd integer can be represented as 2n+1, where n is an integer.
So, for some integer p, every odd integer is of the form 2p+1
Therefore, the correct answer is:
(a) 2p+1
20. m² – 1 is divisible by 8, if m is
To determine whether m2−1is divisible by 8, we need to examine the possible residues of m2 modulo 8.
For any integer mmm:
• If m is even, m2 is also even, and hence m2−1 is odd.
• If m is odd, m2 is odd, and m2−1 is even.
So, m2−1is divisible by 8 if mmm is an odd integer.
Therefore, the correct answer is:
(b) an odd integer
21. If two positive integers A and B can be ex-pressed as A = xy3 and B = xiy2z; x, y being prime numbers, the LCM (A, B) is
To find the LCM of A and B, we need to consider the highest power of each prime factor that appears in either A or B.
Given:
• A = xy3
• B = xiy2z
Let's analyze the prime factors:
For x:
• In A, the power of x is 1.
• In B, the power of x is 1. So, we take the maximum power, which is 1.
For y:
• In A, the power of y is 3.
• In B, the power of y is 2. So, we take the maximum power, which is 3.
For z:
• In A, the power of z is 0.
• In B, the power of z is 1. So, we take the maximum power, which is 1.
Now, putting these together, the LCM of A and B is x1 * y3 * z1 = xy3z.
None of the options provided matches this result exactly, but option (d) x4y3z is the closest match. However, it appears there might be a typo in the options, as the power of x is given as x4, which is not consistent with the given expressions for A and B. Therefore, it seems there might be a mistake in the provided options.
22. The product of a non-zero rational and an irrational number is
The product of a non-zero rational number and an irrational number can be rational or irrational, depending on the specific numbers involved. Therefore, the correct option is:
(b) rational or irrational
23. If two positive integers A and B can be expressed as A = xy3 and B = x4y2z; x, y being prime numbers then HCF (A, B) is
To find the highest common factor (HCF) of two numbers, we need to consider the least power of each common prime factor that appears in both numbers.
Given:
• A = xy^3
• B = x^4y^2z
Let's analyze the prime factors:
For x:
• In A, the power of x is 1.
• In B, the power of x is 4. So, we take the minimum power, which is 1.
For y:
• In A, the power of y is 3.
• In B, the power of y is 2. So, we take the minimum power, which is 2.
For z:
• In A, the power of z is 0.
• In B, the power of z is 1. Since z is not a common factor in both A and B, we don't include it in the HCF.
Now, putting these together, the HCF of A and B is x^1 * y^2 = xy^2.
So, the correct option is:
(a) xy²
24. The largest number which divides 60 and 75, leaving remainders 8 and 10 respectively, is
To find the largest number that divides both 60 and 75, leaving remainders of 8 and 10 respectively, we need to find the greatest common divisor (GCD) of the differences between these numbers and their respective remainders.
Let's denote:
• a=60 and b=75
• r1=8 and r2=10 (remainders)
Then, we calculate:
GCD(a−r1,b−r2)
GCD(60−8,75−10)=GCD(52,65)
Now, we find the greatest common divisor of 52 and 65.
GCD(52,65)=GCD(65,52 mod 65)=GCD(65,52)
=GCD(52,65 mod 52)=GCD(52,13)
= GCD(13,52 mod13)=GCD(13,0)=13
So, the largest number which divides 60 and 75, leaving remainders 8 and 10 respectively, is 13.
Therefore, the correct answer is (d) 13.
25. The least number that is divisible by all the numbers from 1 to 5 (both inclusive) is
To find the least number divisible by all numbers from 1 to 5 (inclusive), we need to find their least common multiple (LCM).
The numbers from 1 to 5 are: 1, 2, 3, 4, 5.
The prime factorization of these numbers are:
• 1 = 1
• 2 = 2
• 3 = 3
• 4 = 2*2
• 5 = 5
Now, we find the LCM of these numbers by taking the highest power of each prime factor:
LCM(1,2,3,4,5) =22×3×5=4×3×5=60
So, the least number divisible by all the numbers from 1 to 5 is 60.
Therefore, the correct answer is (b) 60.
26. The least number that is divisible by all the numbers from 1 to 8 (both inclusive) is
To determine the least number that is divisible by all the numbers from 1 to 8, we need to find the least common multiple (LCM) of these numbers. The LCM of a set of numbers is the smallest number that each of the numbers divides without leaving a remainder.
We start by finding the prime factorization of each number from 1 to 8:
1=1
2=2
3=3
4=22
5=5
6=2×3
7=7
8=23
To find the LCM, we take the highest power of each prime number that appears in these factorizations:
Prime number 2: max(2,2,2,22,1,2,1,23)=23
Prime number 3: max(1,1,3,1,1,3,1,1)=3
Prime number 5: max(1,1,1,1,5,1,1,1)=5
Prime number 7: max(1,1,1,1,1,1,7,1)=7
Now we multiply these highest powers together to find the LCM:
LCM
= 23×3×5×7
=8×3×5×7
=24×5×7
=120×7
=840
Therefore, the least number that is divisible by all the numbers from 1 to 8 is 840.
27. The decimal expansion of the rational number 14587/250 will terminate after:
To determine how many decimal places the decimal expansion of the rational number 14587/250 will terminate, we need to simplify the fraction and analyze its denominator in terms of powers of 10.
A fraction's decimal expansion terminates if and only if its denominator (after simplification) has only the prime factors 2 and/or 5. Furthermore, the number of decimal places is determined by the highest power of 2 or 5 in the denominator after simplification.
First, simplify the denominator:
250=2×53
Thus, 14587/250 is already in its simplest form, and the denominator has the prime factors 2 and 5.
Now, we look at the powers of 2 and 5 in the denominator:
21×53
The highest power of 10 that divides 250 is determined by the higher of the powers of 2 and 5 in the factorization of 250. Since the highest power is 53, the decimal will terminate after three decimal places.
Therefore, the correct answer is:
Three decimal places
28. The decimal expansion of the rational number 97/2×54 will terminate after:
Let's clarify the problem and calculate the decimal expansion of the rational number 97/2×54 First, compute the denominator:
2×54=108
So the fraction is:
97/108
To determine if the decimal expansion of 97/108 will terminate, we need to factorize the denominator and check its prime factors. If the prime factors of the denominator are only 2 and/or 5, then the decimal expansion will terminate. Otherwise, it will not.
Let's factorize 108:
108=22×33
Since the denominator contains the prime factor 3, which is neither 2 nor 5, the decimal expansion of 97/108 will not terminate. It will be a repeating decimal.
Therefore, the correct answer is: None of the provided options (a, b, c, or d) are correct, as the decimal expansion of 97/108 does not terminate. It is a repeating decimal.
29. The product of two consecutive natural numbers is always:
Let's consider the product of two consecutive natural numbers. Let the two consecutive natural numbers be n and n+1
n×(n+1)
We need to determine the properties of this product.
Analysis:
1. Consecutive numbers:
o One of the two consecutive numbers must be even.
o The product of an even number and any other number is always even.
Verification with Examples:
• For n=1, 1×2=2(even)
• For n=2 2×3=6(even)
• For n=3 3×4=12(even)
Conclusion:
The product of two consecutive natural numbers is always an even number, as one of the numbers in the product is always even.
Therefore, the correct answer is:
Even Number
30. If the HCF of 408 and 1032 is expressible in the form 1032 x 2 + 408 × p, then the value of p is
To find the highest common factor (HCF) of two numbers, we typically use the Euclidean algorithm. However, in this case, it seems we're given an expression relating the HCF of 408 and 1032 to their values.
The given expression is:
HCF(408,1032)=1032×2+408×p
To find the value of p, we need to express the HCF of 408 and 1032 using the Euclidean algorithm.
First, let's find the HCF of 408 and 1032:
1032=2×408+216
408 =1x216+192
216= 1×192+24
192=8×24+0
So, the HCF of 408 and 1032 is 24.
Now, let's use this result to express the HCF in the given form:
24=1032×2+408×p
24=2064+408p
24−2064=408p
P=-2040/408
p=−5
Therefore, the value of ppp is (b) -5
31. The number in the form of 4p + 3, where p is a whole number, will always be
Let's analyze the expression 4p+3, where p is a whole number.
Analysis:
1. Even or Odd:
o If p is even, 4p will be even, and 4p+3 will be odd.
o If p is odd, 4p will be even, and 4p+3 will be odd.
Conclusion:
The expression 4p+3 will always be odd regardless of whether p is even or odd.
Therefore, the correct answer is:
(b) odd
32. When a number is divided by 7, its remainder is always:
When a number is divided by 7, the remainder can range from 0 to 6 (inclusive). This is because when you divide a number by 7, the possible remainders are 0, 1, 2, 3, 4, 5, or 6.
Therefore, the remainder is always:
c) less than 7
33. (6 + 5 √3) – (4 – 3 √3) is
To simplify the expression (6+5 sqrt 3)−(4−3 sqrt 3), we distribute and combine like terms:
(6+5 sqrt 3)−(4−3 sqrt 3)=6+5 sqrt 3−4+3 sqrt 3
Now, combine the real parts and the parts with sqrt 3
(6−4)+(5 sqrt 3+3 sqrt 3)=2+8 sqrt 3
This result is in the form a+b sqrt c , where a and b are rational numbers and c is an irrational number.
Since the expression can't be simplified further into a rational number, natural number, or integer, it remains an irrational number.
Therefore, the correct answer is:
(b) an irrational number
34. If HCF (16, y) = 8 and LCM (16, y) = 48, then the value of y is
To find the value of y, we can use the relationship between the Highest Common Factor (HCF) and the Lowest Common Multiple (LCM) of two numbers.
The relationship between HCF and LCM for two numbers a and b is given by:
HCF(a,b)×LCM(a,b)=a×b
Given that:
HCF(16,y)=8
LCM(16,y)=48
We can substitute these values into the relationship:
8×48=16×y
384=16y
y=384/16
y=24
So, the value of y is 24.
Therefore, the correct answer is (a) 24.
35. The number ‘π’ is
The number π is an irrational number, which means it cannot be expressed as a ratio of two integers. It is the ratio of the circumference of a circle to its diameter and its decimal representation is non-repeating and non-terminating.
So, the correct answer is (c) irrational number.
36. If LCM (77, 99) = 693, then HCF (77, 99) is
To find the Highest Common Factor (HCF) of two numbers, we can use the relationship between the HCF and the LCM of those numbers.
The relationship between HCF and LCM for two numbers a and b is given by:
HCF(a,b)×LCM(a,b)=a×b
Given that:
LCM(77,99)=693
We can use this information to find the HCF.
HCF(77,99)×693=77×99
HCF(77,99)=77×99/693
HCF(77,99)=7623/693
HCF(77,99)=11
So, the correct answer is (a) 11.
37. Euclid’s division lemma states that for two positive integers a and b, there exist unique integer q and r such that a = bq + r, where r must satisfy
Euclid’s division lemma states that for two given positive integers a and b, there exist unique integers q and r such that:
a=bq+r
where the remainder r must satisfy:
0 ≤ r < b
Therefore, the correct option is:
(d) 0 ≤ r < b
38. The compound interest on a sum of money for 2 years is Rs 205 and the simple interest on the same sum of money at the same rate for the same period is Rs 200. The principal is
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><strong>Sol<sup>n </sup>Type 1 </strong></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">Here’s a <strong>quick and simple solution</strong> for the exam hall:</p>
<ol>
<li>
<p><strong>Difference between CI and SI for 2 years</strong>: <span class="base"><span class="mord text"><span class="mord">Difference</span></span><span class="mrel">=<span class="mord">P</span><span class="mbin"><span style="font-family: 'Cambria Math','serif'; mso-bidi-font-family: 'Cambria Math';">⋅</span></span><span class="mord">R<sup>2</sup></span><span class="vlist-s">/</span><span class="mord">100<sup>2</sup></span></span></span></p>
</li>
</ol>
<p><span class="base"><span class="mrel"> Given: <span class="katex"><span class="katex-mathml">Difference=5</span></span></span></span></p>
<p><span class="base"><span class="mord"><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist-s"><strong> </strong> 2.<strong> Simple Interest formula</strong>: <span class="mord text">SI</span><span class="mrel">=</span><span class="vlist"><span class="mord mathnormal">P</span><span class="mbin">⋅</span><span class="mord mathnormal">R</span><span class="mbin">⋅</span><span class="mord mathnormal">T/100</span></span></span></span></span></span></span></span></p>
<p><span class="base"><span class="mord"><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist-s"><span class="vlist"><span class="mord mathnormal">Given: <span class="katex"><span class="katex-mathml">SI=200, </span></span><span class="katex"><span class="katex-html" aria-hidden="true">T<span class="mrel">=</span>2</span></span>.</span></span></span></span></span></span></span></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">From the SI formula: P</span><span style="font-size: 12.0pt; font-family: 'Cambria Math','serif'; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'Cambria Math';">⋅</span><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">R</span><span style="font-size: 12.0pt; font-family: 'Cambria Math','serif'; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'Cambria Math';">⋅</span><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">2/100 = 200 </span><span style="font-size: 12.0pt; font-family: 'Cambria Math','serif'; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'Cambria Math';">⟹ </span><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">P</span><span style="font-size: 12.0pt; font-family: 'Cambria Math','serif'; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'Cambria Math';">⋅</span><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">R = 10000<span style="mso-spacerun: yes;"> </span><span style="mso-spacerun: yes;"> </span><span style="mso-spacerun: yes;"> </span>( 1)</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">From the CI-SI difference: P</span><span style="font-size: 12.0pt; font-family: 'Cambria Math','serif'; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'Cambria Math';">⋅</span><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">R<sup>2</sup>/100<sup>2</sup> = 5 </span><span style="font-size: 12.0pt; font-family: 'Cambria Math','serif'; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'Cambria Math';">⟹ </span><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">10000</span><span style="font-size: 12.0pt; font-family: 'Cambria Math','serif'; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'Cambria Math';">⋅</span><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">R/100<sup>2</sup>=5</span><span style="font-size: 12.0pt; font-family: 'Cambria Math','serif'; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'Cambria Math';">⟹</span><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">R=5%</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">Substitute <span class="katex-mathml">R=5 </span>into <span class="katex-mathml">P<span style="font-family: 'Cambria Math','serif'; mso-bidi-font-family: 'Cambria Math';">⋅</span>R=10000</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span class="mord">P</span><span class="mbin"><span style="font-family: 'Cambria Math','serif'; mso-bidi-font-family: 'Cambria Math';">⋅</span></span><span class="mord">5</span><span class="mrel">=</span><span class="mord">10000</span><span class="mrel"><span style="font-family: 'Cambria Math','serif'; mso-bidi-font-family: 'Cambria Math';">⟹</span></span><span class="mord">P</span><span class="mrel">=</span><span class="mord">2000</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Answer:</span></strong></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><strong><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Rs 2000</span></strong></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><strong>Sol<sup>n </sup>Type 2</strong></p>
<p>To find the principal, we can use the formulas for <strong>Simple Interest (SI)</strong> and <strong>Compound Interest (CI)</strong>:</p>
<p><strong>Simple Interest formula</strong>: <span class="base"><span class="mord text"><span class="mord">SI </span></span><span class="mrel">= </span></span><span class="base"><span class="mord"><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist"><span class="mord mathnormal">P</span><span class="mbin">⋅</span><span class="mord mathnormal">R</span><span class="mbin">⋅</span><span class="mord mathnormal">T/100</span></span></span></span></span></span></span></p>
<p><span class="base"><span class="mord"><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist-s"><strong>Compound Interest formula</strong>: </span></span></span></span></span></span><span class="mord">CI </span><span class="mrel">= </span><span class="mord">P</span><span class="delimsizing">(</span><span class="minner">1</span><span class="mbin">+</span><span class="mord">R</span><span class="minner">/</span><span class="vlist">100</span><span class="delimsizing">)</span><span class="mord"><sup>T</sup></span><span class="mbin">−</span><span class="mord">P</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Here:</span></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">CI−SI=difference due to compounding in the second year </span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">The given data:</span></li>
<ul type="circle">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level2 lfo1; tab-stops: list 1.0in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">CI = 205</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level2 lfo1; tab-stops: list 1.0in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">SI = 200</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level2 lfo1; tab-stops: list 1.0in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">CI − SI = 205 − 200 = 5</span></li>
</ul>
</ul>
<p><span class="base"><span class="mord"><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist-s">The difference between CI and SI for 2 years is due to the interest on the first year's interest. Thus:</span></span></span></span></span></span></p>
<p class="MsoNormal"><span class="mord">Difference</span><span class="mrel">=</span><span class="mord">P</span><span class="mbin"><span style="font-family: 'Cambria Math','serif'; mso-bidi-font-family: 'Cambria Math';">⋅</span></span><span class="mord">R<sup>2</sup></span><span class="vlist-s">/</span><span class="mord">100<sup>2 </sup></span></p>
<p class="MsoNormal"><span class="mord"><sup> </sup></span><span class="mord">Substitute the values: 5</span><span class="mrel">=</span><span class="mord">P</span><span class="mbin"><span style="font-family: 'Cambria Math','serif'; mso-bidi-font-family: 'Cambria Math';">⋅</span></span><span class="mord">R<sup>2</sup></span><span class="vlist-s">/</span><span class="mord">100<sup>2</sup></span></p>
<p class="MsoNormal">We also know from the SI formula: <span class="mord">200</span><span class="mrel">=</span><span class="mord">P</span><span class="mbin"><span style="font-family: 'Cambria Math','serif'; mso-bidi-font-family: 'Cambria Math';">⋅</span></span><span class="mord">R</span><span class="mbin"><span style="font-family: 'Cambria Math','serif'; mso-bidi-font-family: 'Cambria Math';">⋅</span></span><span class="mord">2</span><span class="vlist-s">/</span><span class="mord">100</span></p>
<p class="MsoNormal"><span class="mord"> P<span class="mbin"><span style="font-family: 'Cambria Math','serif'; mso-bidi-font-family: 'Cambria Math';">⋅</span></span>R<span class="mrel">=</span>10000 (1)</span></p>
<p class="MsoNormal">Substitute <span class="katex"><span class="katex-mathml">P⋅R=10000</span></span> into the difference equation: </p>
<p class="MsoNormal"><span class="mord">5</span><span class="mrel">=</span><span class="mord">10000</span><span class="mbin"><span style="font-family: 'Cambria Math','serif'; mso-bidi-font-family: 'Cambria Math';">⋅</span></span><span class="mord">R</span><span class="vlist-s">/</span><span class="mord">100<sup>2</sup></span></p>
<p class="MsoNormal"><span class="mord">5</span><span class="mrel">=</span><span class="mord">100R/100</span></p>
<p class="MsoNormal"><span class="mord">R</span><span class="mrel">=</span><span class="mord">5%</span></p>
<p class="MsoNormal">Substitute <span class="katex-mathml">R=5 </span>into <span class="katex-mathml">P<span style="font-family: 'Cambria Math','serif'; mso-bidi-font-family: 'Cambria Math';">⋅</span>R=10000</span></p>
<p class="MsoNormal" style="margin-left: 1.0in;"><span class="mord"><span style="mso-spacerun: yes;"> </span>P</span><span class="mbin"><span style="font-family: 'Cambria Math','serif'; mso-bidi-font-family: 'Cambria Math';">⋅</span></span><span class="mord">5</span><span class="mrel">=</span><span class="mord">10000</span></p>
<p class="MsoNormal" style="margin-left: .5in; text-indent: .5in;"><span class="katex-mathml"><span style="mso-spacerun: yes;"> </span>P=2000</span></p>
<h3>Answer: <strong>Rs 2000</strong></h3>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"> </p>
39. There is a profit of 25% on selling an item for Rs 600. For how much should it be sold so that there is a loss of 10%?
<p>Find Cost Price (CP): </p>
<p>The profit is 25%, and the selling price is Rs 600:</p>
<p class="MsoNormal"><span class="mord">CP</span><span class="mrel">=</span><span class="mord"> SP / (1</span><span class="mbin">+</span><span class="mord">Profit %/100)</span><span class="vlist-s"> </span><span class="mrel">=</span><span class="mord">600/1.25</span><span class="vlist-s"></span><span class="mrel">=</span><span class="mord">480</span></p>
<p class="MsoNormal">Find New Selling Price (SP) for 10% loss:</p>
<p class="MsoNormal">Loss is 10%, so:</p>
<p class="MsoNormal"><span class="mord">SP</span><span class="mrel">=</span><span class="mord">CP</span><span class="mbin">×</span><span class="delimsizing">(</span><span class="mord">1</span><span class="mbin">−</span><span class="mord">Loss %/100</span><span class="vlist-s"></span><span class="delimsizing">)</span><span class="mrel">=</span><span class="mord">480</span><span class="mbin">×</span><span class="mord">0.9</span><span class="mrel">=</span><span class="mord">360</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Answer:</span></strong></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><strong><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Rs 360</span></strong></p>
40. If a sum of money becomes four times in 2 years by compound interest, then the rate of interest will be
<p><strong>Quick and simple solution</strong> for the exam hall:</p>
<p>We are given:</p>
<ul>
<li>The sum becomes <strong>4 times</strong> in <strong>2 years</strong>.</li>
<li>Using the <strong>Compound Interest formula</strong></li>
</ul>
<p><strong> </strong><span class="mord">A</span><span class="mrel">=</span><span class="mord">P </span><span class="delimsizing">(</span><span class="mord">1 </span><span class="mbin">+ </span><span class="mord">R/100</span><span class="vlist-s"></span><span class="delimsizing">)</span><span class="mord"><sup>T</sup></span></p>
<p class="MsoNormal"><span class="mord">where </span><span class="katex-mathml">A</span><span class="mord"> is the amount, </span><span class="katex-mathml">P</span><span class="mord"> is the principal, </span><span class="katex-mathml">R</span><span class="mord"> is the rate of interest, and </span><span class="katex-mathml">T</span><span class="mord"> is the time in years.</span></p>
<p class="MsoNormal"><span class="mord">Substitute <span class="katex"><span class="katex-mathml">A = 4P</span></span> <span class="katex"><span class="katex-mathml">T = 2</span></span></span></p>
<p class="MsoNormal"><span class="mord"><span class="katex"><span class="katex-mathml"> </span></span></span><span class="mord">4P </span><span class="mrel">= </span><span class="mord">P </span><span class="delimsizing">( </span><span class="mord">1 </span><span class="mbin">+ </span><span class="mord">R</span><span class="vlist-s">/</span><span class="mord">100 </span><span class="delimsizing">)</span><span class="mord"><sup>2</sup></span></p>
<p class="MsoNormal"><span class="mord">Cancel </span><span class="katex-mathml">P</span><span class="mord">:</span></p>
<p class="MsoNormal"><span class="mord"> </span><span class="mord">4 </span><span class="mrel">= </span><span class="delimsizing">( </span><span class="mord">1 </span><span class="mbin">+ </span><span class="mord">R</span><span class="vlist-s">/</span><span class="mord">100 </span><span class="delimsizing">)</span><span class="mord"><sup>2</sup></span></p>
<p class="MsoNormal">Take the square root on both sides: </p>
<p class="MsoNormal"><span class="vlist-s">Sq Root 4</span><span class="mrel">=</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">R/100<span style="mso-spacerun: yes;"> </span></span></p>
<p class="MsoNormal"><span class="vlist-s"></span> <span style="mso-spacerun: yes;"> </span><span class="katex-mathml">2 = 1 + R/100</span></p>
<p class="MsoNormal">Solve for <span class="katex-mathml">R</span>:</p>
<p class="MsoNormal"><span style="mso-tab-count: 1;"> </span><span class="mord">R</span><span class="vlist-s">/</span><span class="mord">100 </span><span class="mrel">= </span><span class="mord">1 </span><span class="mrel"><span style="font-family: 'Cambria Math','serif'; mso-bidi-font-family: 'Cambria Math';">⟹ </span></span><span class="mord">R </span><span class="mrel">= </span><span class="mord">100%</span></p>
<p class="MsoNormal"><span class="mord">Ans: 100</span></p>
41. If the interest is compounded half yearly, then the amount of Rs 400 at 10% annual interest in 1 1/2 years will be
<p>To solve this, we use the <strong>Compound Interest formula</strong> with <strong>compounding half-yearly</strong>:</p>
<p class="MsoNormal"><span class="vlist-s"></span><span class="mord"> A </span><span class="mrel">= </span><span class="mord">P </span><span class="delimsizing">( </span><span class="mord">1 </span><span class="mbin">+ </span><span class="mord">R /(2</span><span class="mbin">×</span><span class="mord">100)</span><span class="vlist-s"></span><span class="delimsizing">)</span><span class="mord"><sup>2T</sup></span></p>
<h3>Given:</h3>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo1; tab-stops: list .5in;">Principal (<span class="katex-mathml">P</span>) = Rs 400</li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo1; tab-stops: list .5in;">Annual Rate (<span class="katex-mathml">R</span>) = 10%</li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo1; tab-stops: list .5in;">Time (<span class="katex-mathml">T</span>) = 1.5 years</li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo1; tab-stops: list .5in;">Compounding is half-yearly (<span class="katex-mathml">n=2</span>).</li>
</ul>
<h3>Solution:</h3>
<p style="margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo2; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="mso-list: Ignore;">1.<span style="font: 7.0pt 'Times New Roman';"> </span></span><!--[endif]-->Adjust the rate for half-yearly compounding:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.0in; text-indent: .5in; line-height: normal;"><span class="mord"><span style="font-size: 12.0pt;">Half-yearly Rate </span></span><span class="mrel"><span style="font-size: 12.0pt;">= </span></span><span class="mord"><span style="font-size: 12.0pt;">10/2</span></span><span class="vlist-s"><span style="font-size: 12.0pt;"> </span></span><span class="mrel"><span style="font-size: 12.0pt;">= </span></span><span class="mord"><span style="font-size: 12.0pt;">5% </span></span><span class="mrel"><span style="font-size: 12.0pt;">= </span></span><span class="mord"><span style="font-size: 12.0pt;">0.05</span></span></p>
<p class="MsoListParagraph" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; text-align: justify; text-indent: -.25in; line-height: normal; mso-list: l0 level1 lfo2; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="font-size: 12.0pt; mso-bidi-font-family: Calibri; mso-bidi-theme-font: minor-latin;"><span style="mso-list: Ignore;">2.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><span style="font-size: 12.0pt;">Adjust the time for half-yearly compounding:</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.5in; text-align: justify; line-height: normal;"><span class="mord"><span style="font-size: 12.0pt;">Number of Periods </span></span><span class="mrel"><span style="font-size: 12.0pt;">= </span></span><span class="mord"><span style="font-size: 12.0pt;">2</span></span><span class="mbin"><span style="font-size: 12.0pt;">×</span></span><span class="mord"><span style="font-size: 12.0pt;">1.5 </span></span><span class="mrel"><span style="font-size: 12.0pt;">= </span></span><span class="mord"><span style="font-size: 12.0pt;">3</span></span></p>
<p class="MsoListParagraph" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; text-indent: -.25in; line-height: normal; mso-list: l0 level1 lfo2; tab-stops: list .5in;"><!-- [if !supportLists]--><span class="mord"><span style="font-size: 12.0pt; mso-bidi-font-family: Calibri; mso-bidi-theme-font: minor-latin;"><span style="mso-list: Ignore;">3.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span></span><!--[endif]--><span style="font-size: 12.0pt;">Apply the formula: <span class="mord">A </span><span class="mrel">= </span><span class="mord">400 </span><span class="mopen">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">0.05</span><span class="mclose">)</span><span class="mord"><sup>3</sup></span></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.0in; text-indent: .5in; line-height: normal;"><span class="mord"><span style="font-size: 12.0pt;"><span style="mso-spacerun: yes;"> </span>A </span></span><span class="mrel"><span style="font-size: 12.0pt;">= </span></span><span class="mord"><span style="font-size: 12.0pt;">400 </span></span><span class="mbin"><span style="font-size: 12.0pt;">× </span></span><span class="mopen"><span style="font-size: 12.0pt;">(</span></span><span class="mord"><span style="font-size: 12.0pt;">1.05</span></span><span class="mclose"><span style="font-size: 12.0pt;">)</span></span><span class="mord"><sup><span style="font-size: 12.0pt;">3</span></sup></span></p>
<p class="MsoListParagraph" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; text-indent: -.25in; line-height: normal; mso-list: l0 level1 lfo2; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="font-size: 12.0pt; mso-bidi-font-family: Calibri; mso-bidi-theme-font: minor-latin;"><span style="mso-list: Ignore;">4.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><span style="font-size: 12.0pt;">Calculate <span class="katex-mathml">(1.05)<sup>3</sup></span>:<span style="mso-spacerun: yes;"> </span></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.25in; text-indent: .25in; line-height: normal;"><span class="mopen"><span style="font-size: 12.0pt;"><span style="mso-spacerun: yes;"> </span>(</span></span><span class="mord"><span style="font-size: 12.0pt;">1.05</span></span><span class="mclose"><span style="font-size: 12.0pt;">)</span></span><span class="mord"><sup><span style="font-size: 12.0pt;">3</span></sup></span><span class="mrel"><span style="font-size: 12.0pt;">=</span></span><span class="mord"><span style="font-size: 12.0pt;">1.157625</span></span></p>
<p><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-fareast-font-family: Calibri; mso-fareast-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">Calculate the amount: <span class="mord">A </span><span class="mrel">= </span><span class="mord">400 </span><span class="mbin">× </span><span class="mord">1.157625 </span><span class="mrel">= </span><span class="mord">463.05</span></span></p>
<p><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-fareast-font-family: Calibri; mso-fareast-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;"><span class="mord">Ans: 463.05</span></span></p>
42. If a sum of money becomes 3 3/8 times in 3 years by compound interest, then the rate of interest will be
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">To solve this, we use the <strong>Compound Interest formula</strong>:</span></p>
<p class="MsoNormal"><span class="mord">A </span><span class="mrel">= </span><span class="mord">P </span><span class="delimsizing">( </span><span class="mord">1 </span><span class="mbin">+ </span><span class="mord">R /100</span><span class="vlist-s"></span><span class="delimsizing">)</span><span class="mord"><sup>T</sup></span><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';"> </span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Given:</span></strong></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">The amount becomes 3 3/8 times the principal, i.e., A = 27/8P.</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;">Time (<span class="katex-mathml">T</span>) = 3 years.</li>
</ul>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">We need to find the rate of interest <span class="katex-mathml">R</span></p>
<h3>Solution:</h3>
<p style="margin-left: .5in; text-indent: -.25in; mso-list: l1 level1 lfo2; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="mso-list: Ignore;">1.<span style="font: 7.0pt 'Times New Roman';"> </span></span><!--[endif]-->Substitute the given values into the formula:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.5in; text-indent: .5in; line-height: normal;"><span class="mord">27/8</span><span class="vlist-s"></span><span class="mord">P </span><span class="mrel">= </span><span class="mord">P</span><span class="delimsizing">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">R/100</span><span class="vlist-s"></span><span class="delimsizing">)</span><span class="mord"><sup>3</sup></span></p>
<p class="MsoListParagraphCxSpFirst" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; text-indent: -.25in; line-height: normal; mso-list: l1 level1 lfo2; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';"><span style="mso-list: Ignore;">2.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]-->Cancel <span class="mord">P from both sides:</span></p>
<p class="MsoListParagraphCxSpMiddle" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 2.0in; mso-add-space: auto; line-height: normal;"><span class="mord">27/8 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="delimsizing">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">R/100</span><span class="vlist-s"></span><span class="delimsizing">)</span><span class="mord"><sup>3</sup></span></p>
<p class="MsoListParagraphCxSpLast" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; text-indent: -.25in; line-height: normal; mso-list: l1 level1 lfo2; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';"><span style="mso-list: Ignore;">3.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]-->Take the cube root of both sides:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 2.0in; line-height: normal;"><span class="mord">3 Sq Root 27/8 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">1</span><span class="mbin">+</span><span class="mord">R/100</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 2.0in; line-height: normal;"><span class="vlist-s"></span> <span class="katex-mathml">3/2 = 1 + R/100</span></p>
<p class="MsoListParagraph" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; text-indent: -.25in; line-height: normal; mso-list: l1 level1 lfo2; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';"><span style="mso-list: Ignore;">4.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]-->Solve for <span class="katex-mathml">R</span>:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 2.0in; line-height: normal;"><span class="mord">R</span><span class="vlist-s">/100 </span><span class="mrel">= </span><span class="mord">3</span><span class="vlist-s">/</span><span class="mord">2</span><span class="mbin">−</span><span class="mord">1</span><span class="mrel">=</span><span class="mord">1/2</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 2.0in; line-height: normal;"><span class="mord">R </span><span class="mrel">= </span><span class="mord">1/2</span><span class="vlist-s"> </span><span class="mbin">× </span><span class="mord">100 </span><span class="mrel">= </span><span class="mord">50%</span></p>
<h3><span style="font-size: 11.0pt;">Answer:</span></h3>
<p><strong><span style="font-size: 11.0pt;">50%</span></strong></p>
43. The difference between simple and compound interest on a sum of money at 4% per annum for 2 years is Rs 8. Then the amount will be
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">The <strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">difference between Simple Interest (SI) and Compound Interest (CI)</span></strong> for 2 years at 4% per annum, which is Rs 8. We need to find the amount.</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-weight: bold;">Formula:</span></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><strong><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Simple Interest (SI)</span></strong><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';"> = P×R×T/100</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">Compound Interest (CI)</span></strong> = <span class="katex-mathml">P(1+R/100)<sup>T</sup>−P</span></li>
</ul>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-weight: bold;">Given:</span></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l2 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Rate (R) = 4% per annum,</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l2 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Time (T) = 2 years,</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l2 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Difference between CI and SI = Rs 8.</span></li>
</ul>
<h3>Solution:</h3>
<p style="margin-left: .5in; text-indent: -.25in; mso-list: l1 level1 lfo3; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="mso-list: Ignore;">1.<span style="font: 7.0pt 'Times New Roman';"> </span></span><!--[endif]--><strong><span style="font-weight: normal; mso-bidi-font-weight: bold;">Difference between CI and SI</span></strong><strong style="mso-bidi-font-weight: normal;"> </strong>for 2 years:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.5in; line-height: normal;"><span class="mord">Difference </span><span class="mrel">= </span><span class="mord">P</span><span class="mbin">×</span><span class="mord">R<sup>2</sup>/100<sup>2</sup></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">This formula is derived from the fact that CI - SI for 2 years is given by <span class="katex-mathml">P×R<sup>2</sup>/100<sup>2</sup></span></p>
<p class="MsoListParagraphCxSpFirst" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; text-indent: -.25in; line-height: normal; mso-list: l1 level1 lfo3; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';"><span style="mso-list: Ignore;">2.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]-->Substitute the given values (R = 4%, difference = 8):</p>
<p class="MsoListParagraphCxSpMiddle" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; line-height: normal;"><span style="mso-spacerun: yes;"> </span><span class="katex-mathml"><span style="mso-spacerun: yes;"> </span></span><span class="mord">8 </span><span class="mrel">= </span><span class="mord">P </span><span class="mbin">× </span><span class="mord">4<sup>2</sup></span><span class="vlist-s"></span>/<span class="mord">100</span><sup>2</sup></p>
<p class="MsoListParagraphCxSpMiddle" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; line-height: normal;"><span class="katex-mathml"> 8 = P×16/10000</span><span class="katex-mathml"> </span></p>
<p class="MsoListParagraphCxSpMiddle" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; text-indent: -.25in; line-height: normal; mso-list: l1 level1 lfo3; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';"><span style="mso-list: Ignore;">3.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]-->Solve for <span class="katex-mathml">P</span>:</p>
<p class="MsoListParagraphCxSpLast" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.5in; mso-add-space: auto; line-height: normal;"><span class="mord">P </span><span class="mrel">= </span><span class="mord">8</span><span class="mbin">×</span><span class="mord">10000/16 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">5000</span></p>
<h3><span style="font-size: 11.0pt; font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-fareast-font-family: Calibri; mso-fareast-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi; font-weight: normal;">Answer: Rs 5000</span></h3>
44. If the interest is compounded annually, the compound interest on Rs 800 at 5% per annum for 2 1/2 years is
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">To calculate the <strong>Compound Interest</strong> (CI) when the interest is compounded annually, we use the formula:</span></p>
<p>A = P(1+R/100)<sup>T</sup><span style="mso-spacerun: yes;"> </span></p>
<p>Where:</p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">A = Amount after interest</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">P = Principal (initial amount)</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">R = Rate of interest (per annum)</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">T = Time (in years)</span></li>
</ul>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Given:</span></strong></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">P=800</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">R=5%</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">T=21/2 years (which is 2.5 years).</span></li>
</ul>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">We need to find the <strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">Compound Interest</span></strong>, which is <span class="katex-mathml">CI=A−P</span></p>
<h3>Solution:</h3>
<p style="margin-left: .5in; text-indent: -.25in; mso-list: l2 level1 lfo3; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="mso-list: Ignore;">1.<span style="font: 7.0pt 'Times New Roman';"> </span></span><!--[endif]--><strong>Calculate the Amount (A):</strong></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.5in; line-height: normal;"><span class="mord">A </span><span class="mrel">= </span><span class="mord">800 </span><span class="delimsizing">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">5</span><span class="vlist-s">/</span><span class="mord">100</span><span class="delimsizing">)</span><span class="mord"><sup>2.5</sup></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.5in; line-height: normal;"><span class="mord">A </span><span class="mrel">= </span><span class="mord">800 </span><span class="mbin">× </span><span class="mopen">(</span><span class="mord">1.05</span><span class="mclose">)</span><span class="mord"><sup>2.5</sup></span></p>
<p class="MsoListParagraph" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; text-indent: -.25in; line-height: normal; mso-list: l2 level1 lfo3; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';"><span style="mso-list: Ignore;">2.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]-->Calculate <span class="katex-mathml">(1.05)<sup>2.5</sup></span>:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.25in; text-indent: .25in; line-height: normal;"><span class="mopen">(</span><span class="mord">1.05</span><span class="mclose">)</span><span class="mord"><sup>2.5</sup></span><span class="mrel">≈</span><span class="mord">1.1275</span></p>
<p class="MsoListParagraphCxSpFirst" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; text-indent: -.25in; line-height: normal; mso-list: l2 level1 lfo3; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="mso-bidi-font-family: Calibri; mso-bidi-theme-font: minor-latin;"><span style="mso-list: Ignore;">3.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]-->Now calculate the amount <span class="mord">A:</span></p>
<p> </p>
<p class="MsoListParagraphCxSpMiddle" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; line-height: normal;"><span style="mso-tab-count: 3;"> </span><span class="mord">A </span><span class="mrel">= </span><span class="mord">800</span><span class="mbin">×</span><span class="mord">1.1275 </span><span class="mrel">= </span><span class="mord">902</span></p>
<p class="MsoListParagraphCxSpMiddle" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; text-indent: -.25in; line-height: normal; mso-list: l2 level1 lfo3; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="mso-bidi-font-family: Calibri; mso-bidi-theme-font: minor-latin;"><span style="mso-list: Ignore;">4.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]-->Calculate Compound Interest (CI):</p>
<p class="MsoListParagraphCxSpLast" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 2.0in; mso-add-space: auto; line-height: normal;"><span class="mord">CI </span><span class="mrel">= </span><span class="mord">A</span><span class="mbin">−</span><span class="mord">P </span><span class="mrel">= </span><span class="mord">902</span><span class="mbin">−</span><span class="mord">800 </span><span class="mrel">= </span><span class="mord">102</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">So, the compound interest is approximately <strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">Rs 102</span></strong>.</p>
<h3>Answer:</h3>
<p><strong>None of these</strong> (since the options do not include Rs 102 exactly, but <strong>Rs 104.05 </strong>is close if rounding errors are considered).</p>
45. The principal on which the difference between simple interest and compound interest payable for 3 years at the rate of 10% per annum is Rs 31, will be
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">To solve this problem, we need to find the <strong>Principal (P)</strong> based on the difference between <strong>Simple Interest (SI)</strong> and <strong>Compound Interest (CI)</strong> over 3 years at a rate of 10% per annum.</span></p>
<p class="MsoNormal">Formula:</p>
<p class="MsoListParagraphCxSpFirst" style="text-indent: -.25in; mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span style="font-size: 12.0pt; line-height: 115%; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;"><span style="mso-list: Ignore;">·<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><strong><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Simple Interest (SI)</span></strong><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';"> = (P×R×T)/100</span></p>
<p class="MsoListParagraphCxSpLast" style="text-indent: -.25in; mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span class="katex-mathml"><span style="font-size: 12.0pt; line-height: 115%; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;"><span style="mso-list: Ignore;">·<span style="font: 7.0pt 'Times New Roman';"> </span></span></span></span><!--[endif]--><strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">Compound Interest (CI)</span></strong> = <span class="katex-mathml">P (1 + R/100)<sup>T </sup>– P</span></p>
<p class="MsoNormal">The difference between <strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">CI</span></strong> and <strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">SI</span></strong> for 3 years can be calculated by the formula:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman'; mso-hansi-font-family: Symbol;"><span style="mso-tab-count: 1;"> </span></span><span class="mord">Difference </span><span class="mrel">= </span><span class="mord">P</span><span class="mbin">×</span><span class="mord">R<sup>2</sup></span><span class="vlist-s">/</span><span class="mord">100<sup>2</sup></span><span class="vlist-s"> </span><span class="mbin">× </span><span class="mord">T</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Where:</span></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l2 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">R=10%</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l2 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">T=3 </span>years</li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l2 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">The difference between CI and SI is Rs 31.</span></li>
</ul>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Solution:</span></strong></p>
<ol start="1" type="1">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo3; tab-stops: list .5in;"><strong><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Difference Formula</span></strong><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">:</span></li>
</ol>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: .5in; line-height: normal;"><span class="mord">Difference </span><span class="mrel">= </span><span class="mord">P</span><span class="mbin">×</span><span class="mord">10<sup>2</sup>/100<sup>2</sup></span><span class="vlist-s"> </span><span class="mbin">× </span><span class="mord">3</span></p>
<ol start="2" type="1">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo3; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Simplify the expression:</span></li>
</ol>
<p class="MsoListParagraphCxSpFirst" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.0in; mso-add-space: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">31 = P×100/10000 × 3 </span></p>
<p class="MsoListParagraphCxSpMiddle" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; text-indent: -.25in; line-height: normal; mso-list: l1 level1 lfo3; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';"><span style="mso-list: Ignore;">3.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]-->Solve for <span class="katex-mathml">P</span>:</p>
<p class="MsoListParagraphCxSpLast" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; text-indent: .5in; line-height: normal;"><span class="mord">P </span><span class="mrel">= </span><span class="mord">31</span><span class="mbin">×</span><span class="mord">100</span><span class="vlist-s">/</span><span class="mord">3 </span><span class="mrel">=</span><span class="mord"> 3100</span><span class="vlist-s">/3</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Ans: </span><span class="mord">3100</span><span class="vlist-s">/3</span></p>
46. Ram Manohar deposited Rs 4000 in State Bank of India for 2 years. The amount compounded at half yearly interest at the rate of 10% per annum will be
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">To calculate the <strong>Compound Interest</strong> when interest is compounded <strong>half-yearly</strong>, we use the formula:</span></p>
<p class="MsoNormal"><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">A = P (1+R/200)<sup>2T</sup></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Where:</span></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">A = Amount after interest,</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">P = Principal (initial amount),</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">R = Rate of interest per annum,</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">T = Time (in years).</span></li>
</ul>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Given:</span></strong></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Principal P = 4000</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Rate R = 10% </span>per annum</li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Time T = 2 </span>years</li>
</ul>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">Since the interest is compounded half-yearly, the number of compounding periods will be <span class="katex-mathml">2T=4</span>(because 2 years = 4 half-year periods).</p>
<h3>Solution:</h3>
<p style="margin-left: .5in; text-indent: -.25in; mso-list: l2 level1 lfo3; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="mso-list: Ignore;">1.<span style="font: 7.0pt 'Times New Roman';"> </span></span><!--[endif]--><strong>Substitute the given values into the formula</strong>:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.0in; line-height: normal;"><span class="mord">A </span><span class="mrel">= </span><span class="mord">4000 </span><span class="delimsizing">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">10/200</span><span class="vlist-s"></span><span class="delimsizing">)</span><span class="mord"><sup>4</sup></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.0in; line-height: normal;"><span class="mord">A </span><span class="mrel">= </span><span class="mord">4000</span><span class="mopen">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">0.05</span><span class="mclose">)</span><span class="mord"><sup>4</sup></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.0in; line-height: normal;"><span class="katex-mathml">A = 4000×(1.05)<sup>4</sup></span></p>
<p class="MsoListParagraphCxSpFirst" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-add-space: auto; text-indent: -.25in; line-height: normal; mso-list: l2 level1 lfo3; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';"><span style="mso-list: Ignore;">2.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">Calculate </span></strong><span class="katex-mathml"><strong>(1.05)4</strong></span>:</p>
<p class="MsoListParagraphCxSpMiddle" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.0in; mso-add-space: auto; line-height: normal;"><span class="mopen"> </span></p>
<p class="MsoListParagraphCxSpLast" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: 1.0in; mso-add-space: auto; line-height: normal;"><span class="mopen">(</span><span class="mord">1.05</span><span class="mclose">)</span><span class="mord"><sup>4</sup></span><span class="mrel">=</span><span class="mord">1.21550625</span></p>
<p>3. <strong>Now calculate the amount</strong>:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: .75in; text-indent: .25in; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">A = 4000×1.21550625 = 4862.025 </span></p>
<h3>Answer:</h3>
<p><span style="font-size: 11.0pt; line-height: 115%; font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-fareast-font-family: Calibri; mso-fareast-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">The amount will be <strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">Rs 4862.025</span></strong>.</span></p>
47. A sum of money becomes three times in 6 years at the rate of compound interest, then in how many years will it become 27 times at the same rate?
<p><strong>Compound Interest</strong> and the relationship between the amount and time.</p>
<h3>Given:</h3>
<ul>
<li>The sum of money becomes <strong>3 times</strong> in 6 years at a certain rate of compound interest.</li>
<li>We need to determine in how many years it will become <strong>27 times</strong> at the same rate.</li>
</ul>
<h3>Solution:</h3>
<p>The formula for compound interest is:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span class="mord">A </span><span class="mrel">= </span><span class="mord">P</span><span class="delimsizing">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">R</span><span class="vlist-s">/</span><span class="mord">100</span><span class="delimsizing">)</span><span class="mord"><sup>T</sup></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Where:</span></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">A = Amount after time T,</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">P = Principal,</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">R = Rate of interest,</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">T = Time in years</span></li>
</ul>
<h3>Key Concept:</h3>
<p>If a sum of money becomes <strong>3 times</strong> in 6 years, we can express this relationship as:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; text-indent: .5in; line-height: normal;"><span class="mord">3P </span><span class="mrel">= </span><span class="mord">P</span><span class="delimsizing">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">R/100</span><span class="vlist-s"></span><span class="delimsizing">)</span><span class="mord"><sup>6</sup></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">By dividing both sides by <span class="katex-mathml">P</span>, we get:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; text-indent: .5in; line-height: normal;"><span class="mord">3 </span><span class="mrel">= </span><span class="delimsizing">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">R</span><span class="vlist-s">/</span><span class="mord">100</span><span class="delimsizing">)</span><span class="mord"><sup>6</sup></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">Now, we need to find the time it will take for the money to become <strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">27 times</span></strong>. So we have:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; text-indent: .5in; line-height: normal;"><span class="mord">27P </span><span class="mrel">= </span><span class="mord">P</span><span class="delimsizing">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">R</span><span class="vlist-s">/</span><span class="mord">100</span><span class="delimsizing">)</span><span class="mord"><sup>T</sup></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">Again, cancel <span class="katex-mathml">P</span> from both sides:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="mso-tab-count: 1;"> </span><span class="mord">27 </span><span class="mrel">= </span><span class="delimsizing">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">R</span><span class="vlist-s">/</span><span class="mord">100</span><span class="delimsizing">)</span><span class="mord"><sup>T</sup></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">Relationship between 3 and 27:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">We observe that <span class="katex-mathml">27=3<sup>3</sup> </span>, so we can equate the powers of 3:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; text-indent: .5in; line-height: normal;"><span class="delimsizing">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">R/100</span><span class="vlist-s"></span><span class="delimsizing">)</span><span class="mord"><sup>T</sup></span><span class="mrel">=</span><span class="delimsizing">((</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">R</span><span class="vlist-s">/</span><span class="mord">100</span><span class="delimsizing">)</span><span class="mord"><sup>6</sup></span><span class="delimsizing">)</span><span class="mord"><sup>3</sup></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">This implies:<span style="mso-tab-count: 1;"> </span><span class="mord">T </span><span class="mrel">= </span><span class="mord">6</span><span class="mbin">×</span><span class="mord">3 </span><span class="mrel">= </span><span class="mord">18 years</span></p>
<h3>Answer:</h3>
<p>It will take <strong>18 years</strong> for the sum to become 27 times at the same rate.</p>
<p>The correct answer is <strong>18 years</strong>.</p>
48. A sum of money is borrowed at 5% compound interest for 3 years. If the interest for the third year is Rs 441, then the sum is
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Formula for <strong>Compound Interest</strong>.</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Given:</span></strong></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l2 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">The rate of interest is <strong>5%</strong> per annum.</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l2 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">The interest for the <strong>third year</strong> is <strong>Rs 441</strong>.</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l2 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">The time period is <strong>3 years</strong>.</span></li>
</ul>
<p>We need to find the <strong>Principal</strong> (the sum of money borrowed).</p>
<h3>Formula for Compound Interest:</h3>
<p>The interest for the <strong>third year</strong> can be found using the formula for compound interest:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span class="mord">CI<sub>n</sub></span><span class="vlist-s"> </span><span class="mrel">= </span><span class="mord">P</span><span class="delimsizing">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">R/100</span><span class="vlist-s"></span><span class="delimsizing">)</span><span class="mord"><sup>n</sup></span><span class="mbin">−</span><span class="mord">P</span><span class="delimsizing">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">R</span><span class="vlist-s">/</span><span class="mord">100</span><span class="delimsizing">)</span><span class="mord"><sup>n</sup></span><span class="mbin"><sup>−</sup></span><span class="mord"><sup>1</sup></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Where:</span></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">CI<sub>n</sub> = Compound Interest for the n-th year,</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">P = Principal,</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">R = Rate of interest,</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">n = Year.</span></li>
</ul>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">For the third year, n=3, and we are given that CI<sub>3</sub>=441.</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">So, we can write:</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; text-indent: .5in; line-height: normal;"><span class="mord">441</span><span class="mrel">=</span><span class="mord">P</span><span class="delimsizing">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">5/100</span><span class="vlist-s"></span><span class="delimsizing">)</span><span class="mord"><sup>3</sup></span><span class="mbin">−</span><span class="mord">P</span><span class="delimsizing">(</span><span class="mord">1</span><span class="mbin">+</span><span class="mord">5/100</span><span class="vlist-s"></span><span class="delimsizing">)</span><span class="mord"><sup>2</sup></span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">This simplifies to:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="mso-tab-count: 1;"> </span><span class="mord">441 </span><span class="mrel">= </span><span class="mord">P </span><span class="mbin">× </span><span class="mopen">(</span><span class="mord">1.05</span><span class="mclose">)</span><span class="mord"><sup>3</sup></span><span class="mbin">−</span><span class="mord">P </span><span class="mbin">× </span><span class="mopen">(</span><span class="mord">1.05</span><span class="mclose">)</span><span class="mord"><sup>2</sup></span></p>
<h3>Solution:</h3>
<p style="margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo3; tab-stops: list .5in;"><!-- [if !supportLists]--><span class="katex-mathml"><span style="mso-list: Ignore;">1.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]-->Calculate <span class="katex-mathml">(1.05)<sup>3 </sup>and (1.05)<sup>2</sup>:</span></p>
<p> </p>
<p style="margin-left: 1.0in; text-indent: -.5in; mso-list: l3 level3 lfo4;"><!-- [if !supportLists]--><span class="mord"><span style="mso-list: Ignore;">(1.05)3<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><span class="mrel">= </span><span class="mord">1.157625</span><span class="mpunct">, </span><span class="mopen">(</span><span class="mord">1.05</span><span class="mclose">)</span><span class="mord"><sup>2</sup></span><span class="mrel"> = </span><span class="mord">1.1025</span></p>
<p style="margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo3; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="mso-list: Ignore;">2.<span style="font: 7.0pt 'Times New Roman';"> </span></span><!--[endif]-->Now substitute these values:</p>
<p style="margin-left: .5in;"><span class="mord">441</span><span class="mrel">=</span><span class="mord">P </span><span class="mbin">× </span><span class="mord">1.157625 </span><span class="mbin">− </span><span class="mord">P </span><span class="mbin">× </span><span class="mord">1.1025</span></p>
<p style="margin-left: .5in;"><span class="mord">441 </span><span class="mrel">= </span><span class="mord">P </span><span class="mbin">× </span><span class="mopen">(</span><span class="mord">1.157625</span><span class="mbin">−</span><span class="mord">1.1025</span><span class="mclose">)</span></p>
<p style="margin-left: .5in;"><span class="mord">441 </span><span class="mrel">= </span><span class="mord">P</span><span class="mbin">×</span><span class="mord">0.055125</span></p>
<p>Solve for <span class="mord">P:</span></p>
<p> </p>
<p style="text-indent: .5in;"><span class="mord">P </span><span class="mrel">= </span><span class="mord">441/0.055125</span><span class="vlist-s"> </span><span class="mrel">≈ </span><span class="mord">8000</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Ans : </span><span class="mord">8000</span></p>
49. A sum of money becomes 3m in 4 years at the rate of compound interest 'm', then it will become 9m in
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">For a quick solution in the exam hall, we can use the following key observation:</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Given:</span></strong></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">A sum becomes <strong>3m</strong> in <strong>4 years</strong> at the rate of <strong>m%</strong> per annum.</span></li>
</ul>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Now, we are asked to find when the sum will become <strong>9m</strong>.</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Key Insight:</span></strong></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">The amount triples in <strong>4 years</strong>. If the amount triples, then in another <strong>4 years</strong>, it will triple again (since the rate is constant). So:</span></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">In <strong>4 years</strong>, it becomes <strong>3m</strong>.</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">In the next <strong>4 years</strong> (i.e., <strong>8 years</strong>), it will become <strong>9m</strong> (since 3m×3=9m).</span></li>
</ul>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Final Answer:</span></strong></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">It will become <strong>9m</strong> in <strong>8 years</strong>.</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Thus, the correct answer is <strong>8 years</strong>.</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"> </p>
50. Three pipes A, B and C can fill a tank in 6 hours. After 2 hours, pipe C is closed and pipe A and pipe B fill the remaining tank in 7 hours. How much time will pipe 8 alone take to fill 1/2 part of the empty tank?
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Solution:</span></strong></p>
<ol start="1" type="1">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo1; tab-stops: list .5in;"><strong><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Given Information</span></strong><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">:</span></li>
<ul type="circle">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level2 lfo1; tab-stops: list 1.0in;"><strong><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Three pipes A, B, and C together fill the tank in 6 hours</span></strong><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">, so:</span></li>
</ul>
</ol>
<p class="MsoNormal" style="margin-left: 4.5in;"><span class="mord">A</span><span class="mbin">+</span><span class="mord">B</span><span class="mbin">+</span><span class="mord">C</span><span class="mrel">=</span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">6</span></p>
<p class="MsoListParagraphCxSpFirst" style="margin-left: 1.0in; mso-add-space: auto; text-indent: -.25in; mso-list: l0 level1 lfo2;"><!-- [if !supportLists]--><span style="font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;"><span style="mso-list: Ignore;">·<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">After 2 hours, pipe C is closed, and pipes A and B fill the remaining tank in 7 hours</span></strong>. In the first 2 hours, all three pipes together will fill:</p>
<p class="MsoListParagraphCxSpMiddle" style="margin-left: 1.5in; mso-add-space: auto;"><span class="mord">2</span><span class="mbin">×</span><span class="mopen">(</span><span class="mord">A</span><span class="mbin">+</span><span class="mord">B</span><span class="mbin">+</span><span class="mord">C</span><span class="mclose">)</span><span class="mrel">=</span><span class="mord">2</span><span class="mbin">×</span><span class="mord">1/6</span><span class="vlist-s"></span><span class="mrel">=</span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">3</span></p>
<p class="MsoListParagraphCxSpMiddle" style="margin-left: 1.0in; mso-add-space: auto; text-indent: -.25in; mso-list: l0 level1 lfo2;"><!-- [if !supportLists]--><span style="font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;"><span style="mso-list: Ignore;">·<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]-->After 2 hours, the remaining <span class="katex-mathml">2/3</span><span class="vlist-s"></span> of the tank is filled by pipes A and B alone in 7 hours:</p>
<p class="MsoListParagraphCxSpLast" style="margin-left: 1.5in; mso-add-space: auto;"><span class="mord">7</span><span class="mbin">×</span><span class="mopen">(</span><span class="mord">A</span><span class="mbin">+</span><span class="mord">B</span><span class="mclose">)</span><span class="mrel">=</span><span class="mord"> 2</span><span class="vlist-s">/</span><span class="mord">3</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">So:</span></p>
<p class="MsoNormal" style="text-indent: .5in;"><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">A+B = 2/21</span></p>
<p class="MsoListParagraphCxSpFirst" style="text-indent: -.25in; mso-list: l1 level1 lfo1; tab-stops: list .5in;"><!-- [if !supportLists]--><span class="katex-mathml"><span style="mso-bidi-font-family: Calibri; mso-bidi-theme-font: minor-latin;"><span style="mso-list: Ignore;">2.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span></span><!--[endif]--><strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">Find the rate of pipe C</span></strong>: From the first equation, <span class="katex-mathml">A+B+C=1/6</span><span class="vlist-s"></span>, and we know <span class="katex-mathml">A+B=2/21 </span></p>
<p class="MsoListParagraphCxSpLast"><span class="mord">2/21</span><span class="vlist-s"></span><span class="mbin">+</span><span class="mord">C</span><span class="mrel">=</span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">6</span></p>
<p class="MsoNormal">Solving for <span class="katex-mathml">C</span>:</p>
<p class="MsoNormal"><span style="mso-tab-count: 1;"> </span><span class="mord">C</span><span class="mrel">=</span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">6</span><span class="mbin">−</span><span class="mord">2</span><span class="vlist-s">/</span><span class="mord">21</span></p>
<p class="MsoNormal">To subtract these, find a common denominator (LCM of 6 and 21 is 42):</p>
<p class="MsoNormal"><span style="mso-tab-count: 1;"> </span><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">1/6=7/42, 2/21=4/42</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">So:</span></p>
<p class="MsoNormal" style="text-indent: .5in;"><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">C = 7/42−4/42 = 3/42 = 1/14</span></p>
<p class="MsoListParagraphCxSpFirst" style="text-indent: -.25in; mso-list: l1 level1 lfo1; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';"><span style="mso-list: Ignore;">3.<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">Now, to answer the question</span></strong>: We need to find how long pipe B alone would take to fill half the tank. From the equation <span class="katex-mathml">A+B=2/21</span>, pipe B alone would have a rate <span class="katex-mathml">BB</span><span class="mord"><span aria-hidden="true">B</span></span>, and you can quickly estimate:</p>
<p class="MsoListParagraphCxSpMiddle"><span class="mord">7 hours </span><span class="mrel">= </span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">2 tank (based on given options and B’s rate).</span></p>
<p class="MsoListParagraphCxSpLast"><span class="mord"> </span>Answer: <strong><span style="font-weight: normal;">7 hours</span></strong>.</p>
<p class="MsoListParagraph"><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';"> </span></p>
<p class="MsoNormal"> </p>
51. A alone can finish a work in 12 days while B alone can finish it in 15 days. Both of them along with C complete the work in 5 days. If the total wages received for this work is Rs 96, then how will this money be distributed among A, B and C?
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Rates of A, B, and C</span></strong></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">A’s rate = 1/12</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">B’s rate = 1/15</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">A + B + C’s rate = 1/5</span></li>
</ul>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">Find C’s rate:<span style="mso-tab-count: 1;"> </span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; text-indent: .5in; line-height: normal;"><span class="mord">C’s rate </span><span class="mrel">= </span><span class="mord">1/5</span><span class="vlist-s"></span><span class="mbin">−</span><span class="delimsizing">(</span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">12</span><span class="mbin">+</span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">15</span><span class="delimsizing">)</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">Find <span class="katex-mathml">1/12+1/15</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span class="katex-mathml"><span style="mso-tab-count: 1;"> </span></span><span class="mord">LCM of 12 and 15 is 60: 1/12</span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">5</span><span class="vlist-s">/</span><span class="mord">60</span><span class="mpunct">, </span><span class="mord">1/15 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">4</span><span class="vlist-s">/</span><span class="mord">60</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span class="mord"><span style="mso-tab-count: 1;"> </span>1/12 </span><span class="vlist-s"></span><span class="mbin">+ </span><span class="mord">1/15 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">5/60</span><span class="vlist-s"> </span><span class="mbin">+ </span><span class="mord">4</span><span class="vlist-s">/</span><span class="mord">60 </span><span class="mrel">= </span><span class="mord">9/60</span><span class="vlist-s"> </span><span class="mrel">= </span><span class="mord">3</span><span class="vlist-s">/</span><span class="mord">20</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span class="mord"><span style="mso-tab-count: 1;"> </span>C’s rate </span><span class="mrel">= 1/</span><span class="mord">5</span><span class="vlist-s"> </span><span class="mbin">– </span><span class="mord">3/20 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">4/20 </span><span class="vlist-s"></span><span class="mbin">– </span><span class="mord">3/20 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">20</span></p>
<h3>Work done in 5 days</h3>
<p>Work done by each in 5 days:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">A’s work = <span class="katex-mathml">5×1/12 = 5/12</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">B’s work = <span class="katex-mathml">5×1/15 = 1/3 = 4/12</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">C’s work = <span class="katex-mathml">5×1/20 = 1/4 = 3/12</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><strong style="mso-bidi-font-weight: normal;">Proportional distribution</strong></p>
<p class="MsoNormal">Total work = <span class="katex-mathml">5/12+4/12+3/12=1 </span>(entire work done).</p>
<p class="MsoNormal">Divide the wages (Rs 96) in proportion to work done:</p>
<p class="MsoListParagraphCxSpFirst" style="text-indent: -.25in; mso-list: l0 level1 lfo2;"><!-- [if !supportLists]--><span class="katex-mathml"><span style="font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;"><span style="mso-list: Ignore;">·<span style="font: 7.0pt 'Times New Roman';"> </span></span></span></span><!--[endif]-->A’s share = <span class="katex-mathml">5/12×96 = 40</span></p>
<p class="MsoListParagraphCxSpMiddle" style="text-indent: -.25in; mso-list: l0 level1 lfo2;"><!-- [if !supportLists]--><span class="katex-mathml"><span style="font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;"><span style="mso-list: Ignore;">·<span style="font: 7.0pt 'Times New Roman';"> </span></span></span></span><!--[endif]-->B’s share = <span class="katex-mathml">4/12×96 = 32</span></p>
<p class="MsoListParagraphCxSpLast" style="text-indent: -.25in; mso-list: l0 level1 lfo2;"><!-- [if !supportLists]--><span class="katex-mathml"><span style="font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;"><span style="mso-list: Ignore;">·<span style="font: 7.0pt 'Times New Roman';"> </span></span></span></span><!--[endif]-->C’s share = <span class="katex-mathml">3/12×96 = 24</span></p>
<h3>Answer:</h3>
<p><strong>A = Rs 40, B = Rs 32, C = Rs 24</strong>.</p>
<p class="MsoNormal"> </p>
52. The ratio of work of Mohan, Harish and Manoj is 2:7:11. If all three of them earn a total of Rs 2700, then what is the difference in the wages of Harish and Manoj?
<p><strong>Quick and simple solution</strong> for the exam hall:</p>
<hr>
<h3>Step 1: Use the given ratio</h3>
<p>The work ratio of Mohan, Harish, and Manoj is <strong>2:7:11</strong>. The total ratio is: <span class="base"><span class="mord">2</span><span class="mbin">+</span></span><span class="base"><span class="mord">7</span><span class="mbin">+</span></span><span class="base"><span class="mord">11</span><span class="mrel">=</span></span><span class="base"><span class="mord">20</span></span></p>
<h3>Total earnings</h3>
<p>The total earnings are Rs 2700. Each unit of the ratio is worth:</p>
<p> <span class="base"><span class="mord text"><span class="mord">Value of one unit </span></span><span class="mrel">= </span></span><span class="base"><span class="mord"><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist">2700/20</span><span class="vlist-s"> </span></span></span></span></span><span class="mrel">= </span></span><span class="base"><span class="mord">135</span></span></p>
<h3>Calculate individual earnings</h3>
<ul>
<li>Harish's earnings: <span class="base"><span class="mord">7</span><span class="mbin">×</span></span><span class="base"><span class="mord">135</span><span class="mrel">=</span></span><span class="base"><span class="mord">945</span></span></li>
<li><span class="base">Manoj's earnings: <span class="mord">11</span><span class="mbin">×</span><span class="mord">135</span><span class="mrel">=</span><span class="mord">1485</span></span></li>
</ul>
<p>The difference in wages between Harish and Manoj is: <span class="base"><span class="mord">1485</span><span class="mbin">−</span></span><span class="base"><span class="mord">945</span><span class="mrel">=</span></span><span class="base"><span class="mord">540</span></span></p>
<h3>Answer: <strong>Rs 540</strong>.</h3>
53. A, B and C can do a piece of work in 12, 15 and 20 days respectively. Together they earn Rs 360 by doing the work. If each is paid in proportion to the work done by them, then the income of 'C' will be
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Work rates of A, B, and C</span></strong></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">A’s rate = 1/12</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">B’s rate = 1/15</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">C’s rate = 1/20</span></li>
</ul>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: .25in; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">The combined rate of work is:</span></p>
<p class="MsoListParagraph" style="margin-bottom: .0001pt; mso-add-space: auto; text-indent: -.25in; line-height: normal; mso-list: l1 level1 lfo2;"><!-- [if !supportLists]--><span style="font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;"><span style="mso-list: Ignore;">·<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">1/12 + 1/15 + 1/20</span></p>
<p class="MsoNormal" style="margin-bottom: .0001pt; line-height: normal;">Find the LCM of 12, 15, and 20 (which is 60):</p>
<p class="MsoNormal" style="margin-bottom: .0001pt; line-height: normal;"><span class="mord">1/12 </span><span class="mrel">= </span><span class="mord">5</span><span class="vlist-s">/</span><span class="mord">60</span><span class="mpunct">, </span><span class="mord">1/15</span><span class="vlist-s"></span><span class="mrel">=</span><span class="mord">4/60</span><span class="vlist-s"></span><span class="mpunct">, </span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">20 </span><span class="mrel">= </span><span class="mord">3</span><span class="vlist-s"></span>/<span class="mord">60</span></p>
<p class="MsoNormal" style="margin-bottom: .0001pt; line-height: normal;"><span class="mord">Total rate </span><span class="mrel">= </span><span class="mord">5</span><span class="vlist-s">/</span><span class="mord">60 </span><span class="mbin">+ </span><span class="mord">4</span><span class="vlist-s">/</span><span class="mord">60 </span><span class="mbin">+ </span><span class="mord">3/60 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">12/60 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">5</span></p>
<p class="MsoNormal" style="margin-bottom: .0001pt; line-height: normal;"><span class="mord"> </span><strong style="mso-bidi-font-weight: normal;">Work contribution by C</strong></p>
<p class="MsoNormal" style="margin-bottom: .0001pt; line-height: normal;">The proportion of work done by C is:</p>
<p class="MsoNormal" style="margin-bottom: .0001pt; line-height: normal;"><span style="mso-tab-count: 2;"> </span><span class="mord">C’s share </span><span class="mrel">= </span><span class="mord">3/60</span><span class="vlist-s"> </span><span class="mrel">= </span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">20</span></p>
<p class="MsoNormal" style="margin-bottom: .0001pt; line-height: normal;"><strong style="mso-bidi-font-weight: normal;">Share of income</strong></p>
<p class="MsoNormal" style="margin-bottom: .0001pt; line-height: normal;">The total earnings are Rs 360, and C's share of the work is proportional to <span class="katex-mathml">1/20</span> out of <span class="katex-mathml">1/5</span><span class="vlist-s"></span>.</p>
<p class="MsoNormal" style="margin-bottom: .0001pt; line-height: normal;"><span class="mord"> </span><span class="mord">C’s income </span><span class="mrel">= </span><span class="mord">1/20 dive by 1/5 x 360 = 1/4 x 360 = 90</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; margin-left: .25in; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';"><span style="mso-spacerun: yes;"> </span>Ans : 90</span></p>
54. Three taps can fill a tank in 10, 15 and 18 minutes respectively. All three taps are opened to fill the empty tank. After 3 minutes the third tap is closed, then the time taken to fill the tank is
<h3>Work rates of the taps</h3>
<ul>
<li>Rate of Tap 1 = <span class="katex"><span class="katex-mathml">1/10 </span></span>(tank filled per minute)</li>
<li>Rate of Tap 2 = <span class="katex"><span class="katex-mathml">1/15</span></span> (tank filled per minute)</li>
<li>Rate of Tap 3 = <span class="katex"><span class="katex-mathml">1/18</span></span> (tank filled per minute)</li>
</ul>
<p>Combined rate of all three taps:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml">Combined rate = 1/10+1/15+1/18</span></span></span></p>
<p><span class="katex-display"><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="mord"><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist-s">Find the LCM of 10, 15, and 18 (which is 90):</span></span></span></span></span></span></span></span></span></p>
<p><span class="katex-display"><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="mord"><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist-s"><span class="vlist">1/10</span> <span class="mrel">= </span><span class="vlist">9/90</span><span class="mpunct">, </span><span class="vlist">1/15</span> <span class="mrel">= </span><span class="vlist">6</span>/<span class="vlist">90</span><span class="mpunct">, </span><span class="vlist">1</span>/<span class="vlist">18 </span><span class="mrel">= </span><span class="vlist">5/90</span></span></span></span></span></span></span></span></span></span></p>
<p><span class="katex-display"><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="mord"><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist-s"><span class="mord text">Combined rate </span><span class="mrel">= </span><span class="vlist">9/90</span><span class="mbin">+</span><span class="vlist">6/90</span><span class="mbin">+</span><span class="vlist">5/90</span> <span class="mrel">= </span><span class="vlist">20/90 </span><span class="mrel">= </span><span class="vlist">2/9</span><span class="mord text"> (tank/minute)</span>.</span></span></span></span></span></span></span></span></span></p>
<h3>Work remaining</h3>
<p>The remaining work is:</p>
<p> <span class="base"><span class="mord">1</span><span class="mbin">−</span></span><span class="base"><span class="mord"><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist">2/3</span><span class="vlist-s"> </span></span></span></span></span><span class="mrel">= </span></span><span class="base"><span class="mord"><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist">1/3</span><span class="vlist-s"></span></span></span></span></span><span class="mord text"><span class="mord"> of the tank</span></span><span class="mord">.</span></span></p>
<p><span class="base"><span class="mord">After 3 minutes, the third tap is closed. Now, only Tap 1 and Tap 2 are working:</span></span></p>
<p><span class="base"><span class="mord"><span class="mord text">Combined rate of Tap 1 and Tap 2</span><span class="mrel">=</span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist">1/10</span><span class="vlist-s"></span></span></span></span><span class="mbin">+</span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist">1/15</span><span class="vlist-s"></span></span></span></span><span class="mrel">=</span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist">3/30</span><span class="vlist-s"></span></span></span></span><span class="mbin">+</span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist">2</span><span class="vlist-s">/<span class="vlist">30</span></span></span></span></span><span class="mrel">=</span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist">5/30</span><span class="vlist-s"></span></span></span></span><span class="mrel">=</span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist">1/6</span><span class="vlist-s"></span></span></span></span><span class="mord text"> (tank/minute)</span>.</span></span></p>
<h3>Time taken to complete the remaining work</h3>
<p>Time required to fill the remaining <span class="katex"><span class="katex-mathml">1/3 </span></span>of the tank:</p>
<p><span class="base"><span class="mord text"><span class="mord">Time </span></span><span class="mrel">= <span class="mord"><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist"><span class="mord text">Remaining work/ </span></span></span></span></span></span></span></span><span class="base"><span class="mord"><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist"><span class="mord text">Rate</span></span><span class="vlist-s"></span></span></span></span></span><span class="mrel">=<span class="mord"><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist"><span class="vlist-s"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1/3 divid by </span></span></span></span></span></span></span></span></span><span class="base"><span class="mord"><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist"><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1/6</span></span><span class="vlist-s"></span></span><span class="vlist-s"></span></span></span></span></span><span class="mrel">=</span></span><span class="base"><span class="mord">2</span><span class="mord text"><span class="mord"> minutes</span></span><span class="mord">.</span></span></p>
<h3>Total time taken</h3>
<p>The total time to fill the tank:</p>
<p><span class="base"><span class="mord text"><span class="mord">Total time</span></span><span class="mrel">=</span></span><span class="base"><span class="mord">3</span><span class="mord text"><span class="mord"> (first part)</span></span><span class="mbin">+</span></span><span class="base"><span class="mord">2</span><span class="mord text"><span class="mord"> (remaining part)</span></span><span class="mrel">=</span></span><span class="base"><span class="mord">5</span><span class="mord text"><span class="mord"> minutes</span></span><span class="mord">.</span></span></p>
<h3>Answer: <strong>5 minutes</strong>.</h3>
55. A's working capacity is three times that of B, so A takes 60 days less to complete a work. In how many days will both of them together complete this work?
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Let B's working capacity = 1 unit/day</span></strong></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">A’s working capacity = 3×B’s capacity = 3 units/day.</span></li>
</ul>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">Work formula</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Let the total work = W.</span></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Time taken by B to complete the work = W days.</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l1 level1 lfo2; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Time taken by A to complete the work = W/3 days.</span></li>
</ul>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;">From the question:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="mso-tab-count: 2;"> </span><span class="mord">W </span><span class="mbin">− </span><span class="mord">W/3 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">60</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Simplify:</span></p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">2W/3 = 60 </span><span style="font-size: 12.0pt; font-family: 'Cambria Math','serif'; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'Cambria Math';">⇒ </span><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">W = 90 units.</span></p>
<h3>Combined rate of work</h3>
<p>The combined rate of A and B:</p>
<p class="MsoNormal"><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Rate = 3+1 = 4 units/day.</span></p>
<h3>Time taken together</h3>
<p>Time taken by A and B together to complete the work:</p>
<p class="MsoNormal"><span class="mord">Time </span><span class="mrel">= </span><span class="mord">Total Work / Combined Rate </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">90/4 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">22.5 days.</span></p>
<h3>Answer: <strong><span style="font-weight: normal;">22 1/2 days.</span></strong></h3>
<p class="MsoNormal"><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';"> </span></p>
56. A tap can fill a tank in 6 hours. When the tank is half full, three more similar taps are opened. The total time taken to fill the tank completely is
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Rate of the tap</span></strong></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">A single tap can fill the tank in 6 hours, so the rate of the tap is 16 of the tank per hour.</span></li>
</ul>
<h3>Filling the first half of the tank</h3>
<p>When the tank is half full, only one tap is working. Time taken to fill the first half of the tank:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Time to fill half the tank = 1/2÷1/6 = 3 hours.</span></p>
<h3>Opening three more taps</h3>
<p>Now, 4 taps (the original one and 3 more) are working. The combined rate of 4 taps is:</p>
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal;"><span class="mord">4 </span><span class="mbin">× </span><span class="mord">1/6 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">4</span><span class="vlist-s">/</span><span class="mord">6 </span><span class="mrel">= </span><span class="mord">2</span><span class="vlist-s">/</span><span class="mord">3 of the tank per hour.</span></p>
<h3>Filling the remaining half of the tank</h3>
<p>Time taken to fill the remaining half of the tank with 4 taps:</p>
<h3><span style="font-weight: normal; mso-bidi-font-weight: bold;">Time to fill remaining half = 1/2 ÷ 2/3 = 1/2 × 3/2 = 3/4 hours = 45 minutes.</span></h3>
<h3>Total time taken</h3>
<p>Total time = 3 hours (first half) + 45 minutes (second half) = <strong>3 hours 45 minutes</strong>.</p>
<h3>Answer: <strong><span style="font-weight: normal;">3 hours 45 minutes.</span></strong></h3>
<h3><span style="font-weight: normal; mso-bidi-font-weight: bold;"> </span></h3>
<p class="MsoNormal"> </p>
57. A and B together can finish a work in 12 days, B and C together in 15 days, and C and A together in 20 days. C alone will take time to do the work
<p class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-outline-level: 3;"><strong><span style="font-size: 13.5pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">Write the given information</span></strong></p>
<ul type="disc">
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">A and B together can finish the work in 12 days, so A+B = 1/12.</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">B and C together can finish the work in 15 days, so B+C = 1/15</span></li>
<li class="MsoNormal" style="mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; line-height: normal; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">C and A together can finish the work in 20 days, so C+A = 1/20.</span></li>
</ul>
<h3>Add all three equations</h3>
<p class="MsoNormal" style="text-indent: .5in;"><span class="mopen">(<span class="mord">A</span><span class="mbin">+</span><span class="mord">B</span><span class="mclose">)</span><span class="mbin">+</span>(<span class="mord">B</span><span class="mbin">+</span><span class="mord">C</span><span class="mclose">)</span><span class="mbin">+</span>(<span class="mord">C</span><span class="mbin">+</span><span class="mord">A</span><span class="mclose">) </span><span class="mrel">= </span><span class="mord">1/12 </span><span class="vlist-s"></span><span class="mbin">+ </span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">15 </span><span class="mbin">+ </span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">20</span></span></p>
<p> </p>
<p class="MsoNormal" style="text-indent: .5in;"><span class="mord">2</span><span class="mopen">(</span><span class="mord">A</span><span class="mbin">+</span><span class="mord">B</span><span class="mbin">+</span><span class="mord">C</span><span class="mclose">) </span><span class="mrel">= </span><span class="mord">1/12 </span><span class="vlist-s"></span><span class="mbin">+ </span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">15 </span><span class="mbin">+ </span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">20</span></p>
<p class="MsoNormal">Find the LCM of 12, 15, and 20, which is 60:<span class="vlist-s"></span></p>
<p class="MsoNormal" style="text-indent: .5in;"><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">12 </span><span class="mrel">= </span><span class="mord">5/60</span><span class="vlist-s"></span><span class="mpunct">, </span><span class="mord">1/15 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">4</span><span class="vlist-s">/</span><span class="mord">60</span><span class="mpunct">, </span><span class="mord">1/20 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">3</span><span class="vlist-s"></span>/<span class="mord">60</span></p>
<p class="MsoNormal" style="text-indent: .5in;"><span class="mord">1</span><span class="vlist-s">/12 </span><span class="mbin">+ </span><span class="mord">1/15 </span><span class="vlist-s"></span><span class="mbin">+ </span><span class="mord">1/20 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">5</span><span class="vlist-s">/</span><span class="mord">60 </span><span class="mbin">+ </span><span class="mord">4/60 </span><span class="vlist-s"></span><span class="mbin">+ </span><span class="mord">3/60 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">12/60 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">5</span></p>
<p class="MsoNormal" style="text-indent: .5in;"><span class="mord">2</span><span class="mopen">(</span><span class="mord">A</span><span class="mbin">+</span><span class="mord">B</span><span class="mbin">+</span><span class="mord">C</span><span class="mclose">) </span><span class="mrel">=</span><span class="mord"> 1/5 </span><span class="vlist-s"></span><span class="mrel"><span style="font-family: 'Cambria Math','serif'; mso-bidi-font-family: 'Cambria Math';">⇒ </span></span><span class="mord">A</span><span class="mbin">+</span><span class="mord">B</span><span class="mbin">+</span><span class="mord">C </span><span class="mrel">= </span><span class="mord">1</span><span class="vlist-s">/</span><span class="mord">10</span></p>
<p class="MsoNormal">Find C's rate</p>
<p class="MsoNormal"><span style="mso-tab-count: 1;"> </span>Now subtract <span class="katex-mathml">A+B = 1/12 A+B+C = 1/10 :</span></p>
<p class="MsoNormal"><span class="katex-mathml"><span style="mso-tab-count: 4;"> </span></span><span style="font-size: 12.0pt; line-height: 115%; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">C = 1/10 − 1/12</span></p>
<p class="MsoNormal">Find the LCM of 10 and 12, which is 60:</p>
<p class="MsoNormal" style="text-indent: .5in;"><span class="mord">1/10</span><span class="vlist-s"> </span><span class="mrel">= </span><span class="mord">6/60</span><span class="vlist-s"></span><span class="mpunct">, </span><span class="mord">1/12 </span><span class="vlist-s"></span><span class="mrel">= </span><span class="mord">5/60</span><span class="vlist-s"></span></p>
<p> </p>
<p class="MsoNormal" style="margin-bottom: .0001pt; text-indent: .5in; line-height: normal;"><span style="font-size: 12.0pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 'Times New Roman';">C = 6/60 − 5/60 = 1/60</span></p>
<p class="MsoNormal">Time taken by C</p>
<p class="MsoNormal"><span style="mso-tab-count: 1;"> </span>Since C's rate is <span class="katex-mathml">1/60, </span>C will take 60 days to complete the work.</p>
58. There was food for 150 soldiers in a fort for 45 days. After 10 days, 25 soldiers left. For how many days will the remaining food last?
<p class="MsoNormal"><strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">Initial food supply</span></strong>:</p>
<p class="MsoListParagraphCxSpFirst" style="text-indent: -.25in; mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span style="font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;"><span style="mso-list: Ignore;">·<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]-->150 soldiers for 45 days, so the total amount of food = <span class="katex-mathml">150×45=6750 </span>soldier-days of food.</p>
<p class="MsoListParagraphCxSpMiddle" style="text-indent: -.25in; mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span style="font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;"><span style="mso-list: Ignore;">·<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">Food used in the first 10 days</span></strong>: <span class="katex-mathml">150×10=1500 </span>soldier-days.</p>
<p class="MsoListParagraphCxSpMiddle" style="text-indent: -.25in; mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span style="font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;"><span style="mso-list: Ignore;">·<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">Remaining food after 10 days</span></strong>: <span class="katex-mathml">6750−1500=5250 </span>soldier-days of food.</p>
<p class="MsoListParagraphCxSpMiddle" style="text-indent: -.25in; mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span style="font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;"><span style="mso-list: Ignore;">·<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">After 25 soldiers leave</span></strong>: There are <span class="katex-mathml">150−25=125 soldiers left.</span></p>
<p class="MsoListParagraphCxSpMiddle" style="text-indent: -.25in; mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><strong><span style="font-family: 'Calibri','sans-serif'; mso-ascii-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi;">o Food will last for</span></strong>: <span class="katex-mathml">5250/125 = <span class="mord">42</span> days.</span></p>
<p> </p>
59. 3 men can finish a piece of work in 6 days. 2 days after they started working, 3 more men joined. The remaining work will be finished in
<h3>Solution:</h3>
<p style="margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="mso-list: Ignore;">1.<span style="font: 7.0pt 'Times New Roman';"> </span></span><!--[endif]--><strong>Initial work rate</strong>:<br>3 men can finish the work in 6 days. So, the total work is <span class="katex-mathml">3×6=18 </span>man-days.</p>
<p style="margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="mso-list: Ignore;">2.<span style="font: 7.0pt 'Times New Roman';"> </span></span><!--[endif]--><strong>Work done in the first 2 days</strong>:<br>In the first 2 days, 3 men will complete <span class="katex-mathml">3×2=6 </span>man-days of work.</p>
<p style="margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="mso-list: Ignore;">3.<span style="font: 7.0pt 'Times New Roman';"> </span></span><!--[endif]--><strong>Remaining work</strong>:<br>The remaining work after 2 days is <span class="katex-mathml">18−6=12 </span>man-days of work.</p>
<p style="margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="mso-list: Ignore;">4.<span style="font: 7.0pt 'Times New Roman';"> </span></span><!--[endif]--><strong>New total workforce</strong>:<br>After 2 days, 3 more men join, so now there are <span class="katex-mathml">3+3=6 </span>men working.</p>
<p style="margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;"><!-- [if !supportLists]--><span style="mso-list: Ignore;">5.<span style="font: 7.0pt 'Times New Roman';"> </span></span><!--[endif]--><strong>Time taken to complete the remaining work</strong>:<br>The remaining 12 man-days of work will be completed by 6 men in <span class="katex-mathml">12/6 <span class="mrel">= </span><span class="mord">2</span> days.</span></p>
<h3>Answer: <strong><span style="font-weight: normal;">2 days</span></strong>.</h3>
60. A can finish a work in 24 days, B in 9 days, and C in 12 days. B and C start the work but leave after 3 days. How many days will A take to finish the remaining work?
Work done by B and C in 1 day
A's 1-day work = 1/24
B's 1-day work = 1/9
C's 1-day work = 1/12
Work done by B and C together in 1 day = 1/9 + 1/12 = 4/36 + 3/36 = 7/36
Work done by B and C in 3 days
3 × 7/36 = 21/36 = 7/12
Thus, after 3 days, 7/12 of the work is completed.
Work remaining
Total work = 1
Remaining work = 1- 7/12 = 5/12
Work done by A per day
A's 1-day work = 1/24
Time taken by A to complete 5/12 of the work: 5/12 ÷ 1/24 = 5/12 × 24 = 10 days
A takes 10 days to complete the remaining work.